

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE In Further Pure Mathematics FP3 (6669/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2017 Publications Code 6669_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Question Number	Scheme Notes		Marks	
1	y = ars	inh (1	anh x)	
Way 1	$\sinh y = \tanh x$			B1
	$\cosh y \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sech}^2 x$	M1:	$\pm \cosh y$ or $\pm \operatorname{sech}^2 x$	M1A1
	$\cosh y = \operatorname{sech}^2 x \frac{\mathrm{d}x}{\mathrm{d}y}$	A1:	All correct	111111
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{sech}^2 x}{\mathrm{cosh}\ y}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{sech}^2 x}{\sqrt{1 + \mathrm{sinh}^2 y}} = \mathrm{f}(x)$	Uses term	s a correct identity to express $\frac{dy}{dx}$ in s of x only	M1
	$=\frac{\operatorname{sech}^2 x}{\sqrt{1+\tanh^2 x}}*$	cso. inco and	There must be no errors such as rrect or missing or inconsistent variables no missing h's.	A1*
				Total 5
Way 2	$t = \tanh x \Longrightarrow y = \operatorname{arsinh} t$	Repl	aces tanhx by e,g. t	B1
	$\frac{\mathrm{d}t}{\mathrm{d}x} = \mathrm{sech}^2 x, \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{\sqrt{1+t^2}}$	M1: A1: labe	$\frac{dt}{dx} = \pm \operatorname{sech}^{2} x, \frac{dy}{dt} = \pm \frac{1}{\sqrt{1+t^{2}}}$ Correct $\frac{dt}{dx}$ and $\frac{dy}{dt}$ and correctly lled	M1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{sech}^2 x}{\sqrt{1+t^2}} = \mathrm{f}(x)$	Uses their only	a correct form of the chain rule for variables to express $\frac{dy}{dx}$ in terms of x	M1
	$=\frac{\operatorname{sech}^{2} x}{\sqrt{1+\tanh^{2} x}}*$	Cso. inco and	There must be no errors such as rrect or missing or inconsistent variables no missing h's.	A1*
				Total 5
way 3	$u = \tanh x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{sech}^2 x$	Co	rrect derivative	B1
	$\int \frac{\operatorname{sech}^2 x}{\sqrt{1 + \tanh^2 x}} \mathrm{d}x = \int \frac{\operatorname{sech}^2 x}{\sqrt{1 + u^2}} \frac{1}{\operatorname{sech}^2 x} \mathrm{d}u$	M "d A1	 1: Complete substitution including the x" : Fully correct substitution 	M1A1
	$=\int \frac{1}{\sqrt{1+u^2}} \mathrm{d}u = \operatorname{arsinh} u \left(+c\right)$	Re	aches arsinh <i>u</i>	M1
	$y = \operatorname{arsinh}(\tanh x)(+c)$	Re wit or mi	aches $y = \operatorname{arsinh}(\tanh x)$ with or thout + c and no errors such as incorrect missing or inconsistent variables or ssing h's.	A1*
				10181 5

Special Case:
$$y = \operatorname{arsinh}(\tanh x) \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 + \tanh^2 x}} (\times) \operatorname{sech}^2 x$$
 $= \frac{\operatorname{sech}^2 x}{\sqrt{1 + \tanh^2 x}}$ Note that the sech²x needs to appear separate from the fraction as above and not
just the printed answer written down.To score more than 2 marks using a chain rule method, a third variable must be
introduced

Question	Scheme	Notes	Marks
Number			
2(a)	$\frac{2x}{36} + \frac{2y}{25}\frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{2x}{36}$	$\frac{5x}{6y} = \frac{5\cos\theta}{-6\sin\theta}$ or	
	$x = 6\cos\theta, y = 5\sin\theta \Longrightarrow \frac{dy}{dx}$	$r = \frac{5\cos\theta}{-6\sin\theta}$ or	
	$\frac{y^2}{25} = 1 - \frac{x^2}{36} \Longrightarrow y = 5\sqrt{1 - \frac{x^2}{36}} \Longrightarrow \frac{dy}{dx} =$	$-\frac{5x}{36}\left(1-\frac{x^{2}}{36}\right)^{-\frac{1}{2}} = -\frac{5\cos\theta}{6\sin\theta}$	M1
	M1: Correct attempt at $\frac{dy}{dx}$ using implicit or particular definition of the second sec	arametric or explicit differentiation	
	$\left(ax + by\frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} =, \frac{dy}{dx} = \pm \frac{a\cos\theta}{b\sin\theta}, dy$	$\frac{y}{x} = ax(1-bx^2)^{-\frac{1}{2}}(oe) \Rightarrow \frac{dy}{dx} = \dots$	
	$=-\frac{5\cos\theta}{6\sin\theta}$	A1: Correct tangent gradient in terms of θ . May be implied in their attempt the normal gradient.	A1
	$m_N = \frac{6\sin\theta}{5\cos\theta}$	Correct perpendicular gradient rule. May be awarded if working in terms of <i>x</i> and <i>y</i> .	M1
	$y-5\sin\theta = Their m_N (x-6\cos\theta)$	Correct straight line method for the normal using a "changed" $\frac{dy}{dx}$ in terms of θ which must have come from calculus. If using $y = mx + c$, must reach as far as $c =$	M1
	$6x\sin\theta - 5y\cos\theta = 11\sin\theta\cos\theta^*$	Correct completion to printed answer with no errors.	A1*
	Note that if the candidate uses e.g $y - 5\sin\theta = -\frac{36}{25}$	$\frac{6y}{5x}(x-6\cos\theta)$ before introducing θ , the	
	final mark can be w	ithheid.	(5)
(b)	<u> </u>		(3)
	$b^{2} = a^{2}(1-e^{2}) \Longrightarrow 25 = 36(1-e^{2}) \Longrightarrow e^{2} = \frac{11}{36}$ or $e = \sqrt{\frac{11}{36}}$	Uses the correct eccentricity formula to obtain a value for e or e^2 . Ignore \pm values for e.	M1
	$y = 0 \Longrightarrow x = \frac{11\cos\theta}{6} \text{ or } \frac{11\sin\theta\cos\theta}{6\sin\theta}$	Correct <i>x</i> coordinate for <i>Q</i>	B1
	$\left(\frac{OQ}{OR}\right) = \frac{11\cos\theta}{6} \times \frac{1}{6\cos\theta}$	Attempts $\frac{\text{their } OQ}{\text{their } OR}$. May be implied by their ratio.	M1
	$=\frac{11}{36}$	Correct completion with no errors to obtain $\frac{11}{36}$ both times.	A1
	Ignore any references to the foci or directrices	but the final mark can be withheld if	
	there are any incorrect statements such as e	.g. using $\cos \theta = 1$ in their ratio.	/ * `
			10tal 9

Question Number	Scheme	Notes	Marks
3	$\cosh 2x \equiv 2\cos^2 x$	$sh^2 x - 1$	
	Note that exponentials n	nust be used in (a)	
(a) Way 1	rhs = $2\cosh^2 x - 1 = 2\left(\frac{e^x + e^{-x}}{2}\right)^2 - 1$	Substitutes the correct exponential form into the rhs	M1
	$= 2\left(\frac{e^{2x} + 2 + e^{-2x}}{4}\right) - 1$	Squares correctly to obtain an expression in e^{2x} and e^{-2x} . Dependent on the previous mark.	d M1
	$=\frac{e^{2x}+e^{-2x}}{2}+1-1$		
	$=\frac{e^{2x}+e^{-2x}}{2} = \cosh 2x = \ln x^*$	Complete proof with no errors	A1*
			(3)
	(a) Way	2	
	lhs = $\cosh 2x = \frac{e^{2x} + e^{-2x}}{2}$	Substitutes the correct exponential form	M1
	$=2\left(\frac{\left(e^{x}+e^{-x}\right)^{2}-2}{4}\right)$	Completes the square correctly to obtain an expression in e ^{<i>x</i>} and e ^{-<i>x</i>} Dependent on the previous mark.	d M1
	$2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - 1 = 2\cosh^{2} x - 1 = rhs^{*}$	Complete proof with no errors	A1*

(b) Woy 1	$29\cosh x - 3(2\cosh^2 x - 1) = 38$	Substitutes the result from part (a)	M1
thay 2	$6\cosh^2 x - 29\cosh x + 35 = 0 \Longrightarrow \cosh x = \dots$	Forms a 3-term quadratic and attempt to solve for cosh <i>x</i> . You can apply the General Principles for solving a 3TQ if necessary.	M1
	$\cosh x = \frac{7}{3}$ or $\cosh x = \frac{5}{2}$	Both correct (or equivalent values)	A1
	$\cosh x = \alpha \Rightarrow x = \ln\left(\alpha + \sqrt{\alpha^2 - 1}\right) \text{ or}$ $\cosh x = \alpha \Rightarrow x = \ln\left(\alpha - \sqrt{\alpha^2 - 1}\right) \text{ or}$ $\frac{e^x + e^{-x}}{2} = \alpha \Rightarrow x = \dots$	Uses the correct ln form for arcosh to find at least one value for <i>x</i> for $\alpha > 1$ or uses the correct exponential form for cosh and solves the resulting 3TQ in e ^{<i>x</i>} to find at least one value for <i>x</i> for $\alpha > 1$	M1
	$x = \ln\left(\frac{7}{3} \pm \sqrt{\frac{40}{9}}\right) \text{ and } x$ Or equivalent exact $x = \ln\frac{7 \pm 2\sqrt{10}}{3} \text{ and } x = \ln x$ $x = \pm \ln\left(\frac{7 \pm 2\sqrt{10}}{3}\right) \text{ and } x = \ln x$ $x = \ln\left(7 \pm 2\sqrt{10}\right) - \ln 3 \text{ and}$ A1: Any 2 of these 4 solutions. Penalise lack of occurs e.g. $\ln\frac{5}{2} \pm \frac{\sqrt{21}}{2}$, $\ln\left(\frac{4}{2}\right)$	$x = \ln\left(\frac{5}{2} \pm \sqrt{\frac{21}{4}}\right)$ ct forms e.g. $n\frac{5 \pm \sqrt{21}}{2}$ $= \pm \ln\left(\frac{5 \pm \sqrt{21}}{2}\right)$ $x = \ln\left(5 \pm \sqrt{21}\right) - \ln 2$ ck of brackets once where necessary, f simplification once, the first time it s $\frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - 1}$	A1A1
	Note that the decimal answers	s are, ±1.49, ±1.56,	
			(6)

(b) Way 2	(b) Way 2		
$29\left(\frac{e^{x} + e^{-x}}{2}\right) - 3\left(\frac{e^{2x} + e^{-2x}}{2}\right) = 38$ or $6\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - 29\left(\frac{e^{x} + e^{-x}}{2}\right) + 35 = 0$	Substitutes the correct exponential forms	M1	
$3e^{4x} - 29e^{3x} + 76e^{2x} - 29e^{x} + 3 = 0$	M1: Multiplies by e^{2x} or e^{-2x} to obtain a quartic in e^x or e^{-x} A1: Correct quartic in any form (not necessarily all on one side)	M1A1	
$(3e^{2x}-14e^{x}+3)(e^{2x}-5e^{x}+1)=0 \Rightarrow x=$	Solves their quartic to find at least one value for <i>x</i>	M1	
$x = \ln\left(\frac{7}{3} \pm \sqrt{\frac{40}{9}}\right) \text{ and } x = 0$ Or equivalent exact $x = \ln\frac{7 \pm 2\sqrt{10}}{3} \text{ and } x = \ln\frac{5}{3}$ $x = \pm \ln\left(\frac{7 \pm 2\sqrt{10}}{3}\right) \text{ and } x = \pm 1$ $x = \ln\left(7 \pm 2\sqrt{10}\right) - \ln 3 \text{ and } x$ e.g. $\ln\frac{5}{2} \pm \frac{\sqrt{21}}{2}$, $\ln\left(\frac{5}{2} \pm \frac{\sqrt{21}}{2}\right)$ A1: All 4 cor	$= \ln\left(\frac{5}{2} \pm \sqrt{\frac{21}{4}}\right)$ forms e.g. $\frac{5 \pm \sqrt{21}}{2}$ $\pm \ln\left(\frac{5 \pm \sqrt{21}}{2}\right)$ $x = \ln\left(5 \pm \sqrt{21}\right) - \ln 2$ $\pm \sqrt{\left(\frac{5}{2}\right)^2 - 1}$ rect	A1A1	

Question Number	Scheme	Notes	Marks
4	$\frac{dx}{du} = 2u$ or $\frac{du}{dx} = \frac{1}{2}(x+2)^{-\frac{1}{2}}$	Or equivalent correct derivative in any form . May be implied by their substitution.	B1
	$\int \frac{(x+2)^{\frac{1}{2}}}{x+5} dx = \int \frac{(u^2)^{\frac{1}{2}}}{u^2 - 2 + 5} 2u(du)$ or $\int \frac{(x+2)^{\frac{1}{2}}}{x+5} dx = \int \frac{(x+2)^{\frac{1}{2}}}{u^2 - 2 + 5} \times \frac{2}{(x+2)^{\frac{1}{2}}} (du)$	Complete substitution including their "dx". Allow the omission of "du" if it is implied by later work.	M1
	$= 2 \int \frac{u^2}{u^2 + 3} (du) \text{ or } \int \frac{2u^2}{u^2 + 3} (du)$	Correct integral	A1
	$(2)\int \frac{u^2}{u^2+3} \mathrm{d}u = (2)\int \left(1-\frac{3}{u^2+3}\right) \mathrm{d}u$	Splits the fraction into $A + \frac{B}{u^2 + 3}$	M1
	$= (2) \left[u - \frac{3}{\sqrt{3}} \arctan \frac{u}{\sqrt{3}} \right]$	A1: u A1: $-\frac{3}{\sqrt{3}} \arctan \frac{u}{\sqrt{3}}$	A1 A1
	$x = -1 \Longrightarrow u = 1, x = 7 \Longrightarrow u = 3$	Correct limits.	B1
	$=2\left[\left(3-\frac{3}{\sqrt{3}}\frac{\pi}{3}\right)-\left(1-\frac{3}{\sqrt{3}}\frac{\pi}{6}\right)\right]$	Substitutes <i>u</i> limits correctly into an expression of the form $\pm \alpha u \pm \beta \arctan(ku), \ \alpha, \beta \neq 0$ and subtracts the right way round.	M1
	$=4-\frac{\sqrt{3}}{3}\pi$	Cao (oe)	A1
			(9) Total 9
	Alternative using substitution aga	in for last 6 marks:	10(41)
	$u = \sqrt{3} \tan \theta \Longrightarrow (2) \int \frac{u^2}{u^2 + 3} \mathrm{d}u = (2) \int \frac{u^2}{$	$\frac{3\tan^2\theta}{3\tan^2\theta+3}\sqrt{3}\sec^2\theta d\theta$	M1
	Use of $u = \sqrt{3} \tan \theta$ and a comp	lete substitution.	
	$= \left(2\sqrt{3} \right) \tan^2 \theta \mathrm{d}\theta = \left(2\sqrt{3} \right) \left(\sec^2 \theta - 1 \right) \mathrm{d}\theta$	Α1: θ	A 1 A 1
	$= (2\sqrt{3})[\tan\theta - \theta]$	A1: $\tan \theta$	
	$u = 1 \Longrightarrow \theta = \frac{\pi}{6}, \ u = 3 \Longrightarrow \theta = \frac{\pi}{3}$	Correct limits	B1
	$=2\sqrt{3}\left[\left(\sqrt{3}-\frac{\pi}{3}\right)-\left(\frac{1}{\sqrt{3}}-\frac{\pi}{6}\right)\right]$	Substitutes θ limits correctly into an expression of the form $\pm \alpha \tan \theta \pm \beta \theta$, $\alpha, \beta \neq 0$ and subtracts the right way round.	M1
	$=4-\frac{\sqrt{3}}{3}\pi$	cao	A1

Question Number	Scheme		Notes	
5.	$\Pi_1: x - 2y - 3z = 5, \Pi_2: 6x + y - 4z = 7$			
(a) Way 1	$\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 1 \\ -4 \end{pmatrix} = 6 - 2 + 12$	Attempts allowing value of 1	Attempts scalar product of normal vectors allowing one slip. May be implied by a value of 16.	
	$16 = \sqrt{1^2 + 2^2 + 3^2} \sqrt{6^2 + 1^2 + 4^2} \cos \theta$ $\implies \cos \theta = \dots$	Complete	e attempt to find $\cos \theta$	M1
	$\cos\theta = \frac{16}{\sqrt{14}\sqrt{53}} \Longrightarrow \theta = 54^{\circ}$	Cao and c subsequer score A0.	do not isw. E.g. if they ntly find 90 – 54 or 180 – 54, Do not allow 54.0.	A1
(a) Way 2	$ \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \times \begin{pmatrix} 6 \\ 1 \\ -4 \end{pmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & -3 \\ 6 & 1 & -4 \end{vmatrix} = \begin{pmatrix} 11 \\ -14 \\ 13 \end{pmatrix} $	Attempts 2 compon no workir	cross product of normal vectors. nents should be correct if there is ng.	M1
	$\sqrt{11^2 + 14^2 + 13^2} = \sqrt{1^2 + 2^2 + 3^2} \sqrt{6^2 + 1^2} + \Rightarrow \sin \theta = \dots$	$= \sqrt{1^2 + 2^2 + 3^2} \sqrt{6^2 + 1^2 + 4^2} \sin \theta$ $\theta = \dots$ Complete attempt to find $\sin \theta$		M1
	$\sin\theta = \frac{9\sqrt{6}}{\sqrt{14}\sqrt{53}} \Longrightarrow \theta = 54^{\circ}$	Cao and c subsequer score A0.	do not isw. E.g. if they ntly find 90 – 54 or 180 – 54, . Do not allow 54.0.	A1
				(3)
(b)	$\mathbf{PQ} = \begin{pmatrix} 2\\ 3\\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ -2\\ -3 \end{pmatrix} \text{or} \begin{pmatrix} 2+\lambda\\ 3-2\lambda\\ -1-3\lambda \end{pmatrix}$	Attempt p the point	parametric form of PQ by using P and the normal to Π_1	M1
	$6(2+\lambda)+(3-2\lambda)-4(-1-3\lambda)=7$ $\Rightarrow \lambda = \dots$	Substitute equation	es parametric form of PQ into the of Π_2 and solves for λ	M1
	$\lambda = -\frac{3}{4} \Longrightarrow Q \text{ is } \left(\frac{5}{4}, \frac{9}{2}, \frac{5}{4}\right)$	M1: Uses equation A1: Corre	their value of λ in their PQ ect coordinates or vector.	M1A1
				(4)

$\langle \rangle$			
(c)	$\begin{pmatrix} 1 \\ 6 \end{pmatrix} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \end{vmatrix} \begin{pmatrix} 11 \end{pmatrix}$	M1: Attempt cross product between	
	$ -2 \times 1 = 1 -2 -3 = -14 $	normals	M1A1
	$\begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} -4 \end{pmatrix} \begin{vmatrix} 6 & 1 & -4 \end{vmatrix} \begin{pmatrix} 13 \end{pmatrix}$	A1: Correct normal vector (any multiple)	
	Alt	ernative:	
	x - 2y - 3z = 0, $6x + y - 2$	$4z = 0: x = 1 \implies y = -\frac{14}{11}, z = \frac{13}{11}$	
		$\begin{pmatrix} 11 \end{pmatrix}$	
	\rightarrow r	$a = \begin{vmatrix} -14 \end{vmatrix}$	
		$\begin{pmatrix} 1\\ 13 \end{pmatrix}$	
	M1: Solves $x - 2y - 3z = 0$, $6x + y$	y - 4z = 0 to obtain values for x, y and z	
	A1: Correct	vector (or values)	
	$\begin{pmatrix} 11 \\ -14 \\ 13 \end{pmatrix} \cdot \begin{pmatrix} \frac{5}{4} \\ \frac{9}{2} \\ \frac{5}{4} \end{pmatrix} = \dots \text{ or } \begin{pmatrix} 11 \\ -14 \\ 13 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \dots$	Attempt scalar product between their normal and their OQ or OP . Must obtain a value.	M1
	(11)	$\begin{pmatrix} 11k \end{pmatrix}$	
	$ {\bf r}_{\bullet} - 14 = -33$	Any multiple e.g. r. $-14k = -33k (k \neq 0)$	A1
	(13)	(13k)	
	Note that if they use the intersection with <i>I</i>	$T_1\left(\frac{17}{7}, \frac{15}{7}, \frac{-16}{7}\right)$ for Q allow all the marks	
	to sc	core in (c).	
			(4)
			Total 11

Numberdet $\mathbf{M} = 1 \times (2-1) - k (-2+4) (+0) = 1-2k^*$ or e.g. det $\mathbf{M} = (0) - 1(1+4k) - 1(-2-2k) = 1-2k^*$ or rule of Sarus: det $\mathbf{M} = 2-4k - 1+2k = 1-2k^*$ or rule of Sarus: det $\mathbf{M} = 2-4k - 1+2k = 1-2k^*$ or e.g. (1) $\begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} + 0 \begin{vmatrix} 2 & -2 \\ -4 & -1 \end{vmatrix}$ M1: Correct attempt at determinant rotation as in the last example, then you must see at least one intermediate step before the primed answer e.g. minimally $1 - 2k + 0$.M1A1*(b)(\mathbf{M}^{T}) (\mathbf{M}^{T}) (\mathbf{M}^{T} (cofactors)(cofactors)(2)(b)(\mathbf{M}^{T}) (\mathbf{M}^{T} (minors)(cofactors)(cofactors)($1 - 2 - 4k$ $k - 2 - 1$ $0 - 1 - 1k$ (cofactors)(1 - 2 - 6k k - 1 - 1 - 4k k k - 1 - 2 - 2k)B1(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T} (\mathbf{M}^{T})(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T} (\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T})(\mathbf{M}^{T)(\mathbf{M}^{T)(\mathbf{M}^{T	Question	Scheme	Notes	Marks
			M1. Comment of the most of the termine of	
$ \mathbf{M} = \frac{1}{1 - 2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -2k \end{bmatrix} = \begin{pmatrix} -2 & -2 \\ -4 & -1 \end{bmatrix} + 0 \begin{bmatrix} 2 & -2 \\ -4 & 1 \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} -2 & 1 \\ -2 & -1 \\ -4 & -1 \end{bmatrix} + 0 \begin{bmatrix} 2 & -2 \\ -4 & 1 \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & 2 & -4 \\ k & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -4k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -4k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -4k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -4k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -4k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -2k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -2k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 & -2k & -2 & -2k \end{bmatrix} $ $ \mathbf{M} = \frac{1}{2k} \begin{bmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2k & -2k & -2k \\ -2 & -1 & -1 \\ -6 & -1 & -2k & -2k & -2k & -2k \\ -2 & -1 & -1 \\ -6 & -1 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k & -2k & -2k \\ -2 & -2k & -2k &$	0(a)	det $\mathbf{M} = 1 \times (2-1) - k(-2+4)(+0) = 1 - 2k *$ or e.g. det $\mathbf{M} = (0) - 1(1+4k) - 1(-2-2k) = 1 - 2k *$	(at least 2 'elements' correct). May need to check as they might use a different row/column.	
$(b) \qquad (M^{T}) \qquad (minors) \qquad (cofactors) \\ \begin{pmatrix} 1 & 2 & -4 \\ k & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} or \begin{pmatrix} 1 & 2 & -6 \\ -k & -1 & 1+4k \\ k & 1 & -2-2k \end{pmatrix} or \begin{pmatrix} 1 & -2 & -6 \\ k & -1 & -1-4k \\ k & -1 & -2-2k \end{pmatrix} B1$ $M^{-1} = \frac{1}{1-2k} \begin{pmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1-4k & -2-2k \end{pmatrix}$ $M^{1}: Full attempt at inverse ignoring determinant. Need to see all stages but allow numerical slips. A1: 2 correct rows or 2 correct columns including reciprocal of determinant A1: A1: Correct including reciprocal of determinant A1: A1: Correct parametric form A1: Correct parametric form A1: Correct parametric form Or their parametric form or correct. Or starts again to find the inverse and multiplies. M1A1 \\ \frac{1}{1} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1+5\lambda \\ -2+2\lambda \\ 3+\lambda \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13\lambda \\ -10 & -34 \end{pmatrix}$ $M1A1 \\ A1: Correct parametric form for l_{1} or correct matrix. \\ \frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-3} \text{ oe}$ $\frac{x+b_{\lambda}}{a_{2}+b_{\lambda}} \rightarrow \frac{x-a_{1}}{b_{1}} = \frac{y-a_{2}}{b_{2}} = \frac{z-a_{3}}{b_{3}}$ $M1A1 \\ A1: A complete correct equation in (c) allow a full recovery. \\ M1A1 \\ A1: A correct answer is obtained in (c) allow a full recovery. \\ (6) \\$		or rule of Sarrus: det $\mathbf{M} = 2 - 4k - 1 + 2k = 1 - 2k *$ Or e.g. $(1)\begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} - k\begin{vmatrix} 2 & 1 \\ -4 & -1 \end{vmatrix} + 0\begin{vmatrix} 2 & -2 \\ -4 & 1 \end{vmatrix}$	A1: Obtains printed answer with no errors. If they use determinant notation as in the last example, then you must see at least one intermediate step before the printed answer e.g. minimally $1 - 2k + 0$.	M1A1*
(b) $ (\mathbf{M}^{T}) (\text{minors}) (\text{cofactors}) \\ \begin{pmatrix} 1 & 2 & -4 \\ k & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 2 & -6 \\ -k & -1 & 1+4k \\ k & 1 & -2-2k \end{pmatrix} \text{ or } \begin{pmatrix} 1 & -2 & -6 \\ k & -1 & -1-4k \\ k & -1 & -2-2k \end{pmatrix} \text{ B1} $ $ \mathbf{M}^{-1} = \frac{1}{1-2k} \begin{pmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1-4k & -2-2k \end{pmatrix} \text{ minors} (1 -2 - 2k) \text{ and multiples} \text{ minors} 2 \text{ correct} \text{ minors} 2 $				(2)
$\mathbf{M}^{-1} = \frac{1}{1-2k} \begin{pmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1-4k & -2-2k \end{pmatrix} \qquad $	(b)	$\begin{pmatrix} \mathbf{M}^{\mathrm{T}} \end{pmatrix} \qquad (\text{minors}) \\ \begin{pmatrix} 1 & 2 & -4 \\ k & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 2 & -6 \\ -k & -1 & 1+4k \\ k & 1 & -2-2k \end{pmatrix}$	$\left(\begin{array}{c} \text{cofactors} \right) \\ \text{or} \left(\begin{array}{c} 1 & -2 & -6 \\ k & -1 & -1 - 4k \\ k & -1 & -2 - 2k \end{array}\right) \\ \end{array}\right)$	B1
(c) $l_{2}:(1+5\lambda)\mathbf{i}+(-2+2\lambda)\mathbf{j}+(3+\lambda)\mathbf{k}$ $M1: Attempt l_{2} in parametric form M1A1$ $A1: Correct parametric form M1A1$ $\frac{1}{1}\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix}\begin{pmatrix} 1+5\lambda \\ -2+2\lambda \\ 3+\lambda \end{pmatrix} = \begin{pmatrix} 1+5\lambda \\ -3-13\lambda \\ -10-34\lambda \end{pmatrix}$ or e.g. $\frac{1}{1}\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix}\begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ $A1: Correct parametric form for l_{1}$ $A1: Correct parametric form for l_{1}$ $A1: Correct parametric form for l_{1}$ $\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34} \text{ oe}$ $a_{1}+b_{1}\lambda$ $a_{2}+b_{2}\lambda \rightarrow \frac{x-a_{1}}{b_{1}} = \frac{y-a_{2}}{b_{2}} = \frac{z-a_{3}}{b_{3}}$ $If their \mathbf{M}^{-1} \text{ is incorrect in terms of } k \text{ but by substituting } k = 0, a \text{ correct answer is obtained in is obtained in in (c) allow a full recovery.}$ (4)		$\mathbf{M}^{-1} = \frac{1}{1 - 2k} \begin{pmatrix} 1 & k & k \\ -2 & -1 & -1 \\ -6 & -1 - 4k & -2 - 2k \end{pmatrix}$	M1: Full attempt at inverse ignoring determinant. Need to see all stages but allow numerical slips. A1: 2 correct rows or 2 correct columns including reciprocal of determinant A1: All correct including reciprocal of determinant	M1A1A1
(c) $l_{2}:(1+5\lambda)\mathbf{i}+(-2+2\lambda)\mathbf{j}+(3+\lambda)\mathbf{k}$ $\frac{M1: Attempt l_{2} in parametric form}{A1: Correct parametric form}$ $\frac{1}{1}\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix}\begin{pmatrix} 1+5\lambda \\ -2+2\lambda \\ 3+\lambda \end{pmatrix} = \begin{pmatrix} 1+5\lambda \\ -3-13\lambda \\ -10-34\lambda \end{pmatrix}$ or e.g. $\frac{1}{1}\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix}\begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ $\frac{1}{1}\begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix}\begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ $\frac{1}{1} \begin{bmatrix} 0 & 0 \\ -2 & -1 & -1 \\ -5 & -1 & -2 \end{pmatrix}\begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ $\frac{1}{1} \begin{bmatrix} 0 \text{ correct parametric form for } l_{1} \\ \text{ or correct matrix.} \end{bmatrix}$ $\frac{1}{1} \begin{bmatrix} x-1 \\ -5 \\ -3 \\ -1 & -2 \end{pmatrix} = \frac{y+3}{-13} = \frac{z+10}{-34} \text{ oe}$ $\frac{1}{1} \begin{bmatrix} x-1 \\ -2 \\ -3 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ $\frac{1}{1} \begin{bmatrix} x-1 \\ -2 \\ -3 \\ -1 & -2 \end{pmatrix} = \frac{y-3}{b_{2}} = \frac{z-a_{3}}{b_{3}}$ $\frac{1}{1} \begin{bmatrix} 1 \text{ correct ly} \\ -2 \\ -3 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ $\frac{1}{1} \begin{bmatrix} 1 \text{ correct ly} \\ -2 \\ -3 \\ -1 & -2 \\ -3 \\ -3 \\ -1 & -34 \\ -1 \\ -3 \\ -3$				(4)
$\frac{1}{1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{bmatrix} \begin{pmatrix} 1+5\lambda \\ -2+2\lambda \\ 3+\lambda \end{pmatrix} = \begin{pmatrix} 1+5\lambda \\ -3-13\lambda \\ -10-34\lambda \end{pmatrix}$ or e.g. $\frac{1}{1} \begin{bmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{bmatrix} \begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3-1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ A1: Correct parametric form for l_1 or correct matrix. $\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34}$ M1: Attempts cartesian form from their parametric l_1 correctly. $\frac{a_1 + b_1\lambda}{a_2 + b_2\lambda \rightarrow \frac{x-a_1}{b_1}} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3}$ M1A1 M1: Attempts cartesian form from their parametric l_1 correct equation If their \mathbf{M}^{-1} is incorrect in terms of k but by substituting $k = 0$, a correct answer is obtained in (c) allow a full recovery. (6)	(c)	$l_2:(1+5\lambda)\mathbf{i}+(-2+2\lambda)\mathbf{j}+(3+\lambda)\mathbf{k}$	M1: Attempt <i>l</i> ₂ in parametric form A1: Correct parametric form	M1A1
$\frac{1}{1} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix}$ A1: Correct parametric form for l_1 or correct matrix. A1: Correct parametric form for l_1 or correct l_1 $\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34}$ oe $a_1 + b_1\lambda$ $a_2 + b_2\lambda \rightarrow \frac{x-a_1}{b_1} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3}$ If their \mathbf{M}^{-1} is incorrect in terms of k but by substituting $k = 0$, a correct answer is obtained in (c) allow a full recovery. (6)		$\frac{1}{1} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1+5\lambda \\ -2+2\lambda \\ 3+\lambda \end{pmatrix} = \begin{pmatrix} 1+5\lambda \\ -3-13\lambda \\ -10-34\lambda \end{pmatrix}$	M1: Puts $k = 0$ in their \mathbf{M}^{-1} and multiplies this by their parametric form correctly. Or starts again to find the inverse and multiplies.	
$\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34} \text{ oe}$ $a_1 + b_1 \lambda$ $a_2 + b_2 \lambda \rightarrow \frac{x-a_1}{b_1} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3}$ $M1: \text{ Attempts cartesian form from their parametric } l_1 \underline{\text{ correctly}}.$ $Dependent \text{ on both previous M's.}$ $A1: \text{ A complete correct equation}$ $M1: \text{ Attempts cartesian form from their parametric } l_1 \underline{\text{ correctly}}.$ $Dependent \text{ on both previous M's.}$ $A1: \text{ A complete correct equation}$ $M1: \text{ Attempts cartesian form from their parametric } l_1 \underline{\text{ correctly}}.$ $Dependent \text{ on both previous M's.}$ $A1: \text{ A complete correct equation}$ $M1: \text{ Attempts cartesian form from their parametric } l_1 \underline{\text{ correctly}}.$ $Dependent \text{ on both previous M's.}$ $A1: \text{ A complete correct equation}$ $M1A1$		or e.g. $ \frac{1}{1} \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & -1 \\ -6 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -2 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ -3 & -13 \\ -10 & -34 \end{pmatrix} $	A1: Correct parametric form for l_1 or correct matrix.	MIAI
$\begin{array}{c c} a_2 + b_2 \lambda \rightarrow \frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} \\ \hline A1: A \text{ complete correct equation} \\ \hline If their \mathbf{M}^{-1} \text{ is incorrect in terms of } k \text{ but by substituting } k = 0, a \text{ correct answer is obtained in} \\ \hline (c) \text{ allow a full recovery.} \\ \hline \hline \mathbf{Total 12} \end{array}$		$\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34}$ oe $a_1 + b_1 \lambda$	M1: Attempts cartesian form from their parametric l_1 correctly. Dependent on both previous M's.	dM1A1
If their \mathbf{M}^{-1} is incorrect in terms of k but by substituting $k = 0$, a correct answer is obtained in (c) allow a full recovery. (6) Total 12 (6)		$a_2 + b_2 \lambda \rightarrow \frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3}$ $a_3 + b_3 \lambda$	A1: A complete correct equation	
(c) allow a full recovery. (6)		If their \mathbf{M}^{-1} is incorrect in terms of k but by substituti	ng $k = 0$, a correct answer is obtained in	
Total 12		(c) allow a full reco		(6)
				Total 12

(c) Way 2	2	
$\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $6\mathbf{i} + 4\mathbf{k}$ are on l_2		
$\mathbf{M}^{-1}(\mathbf{i}-2\mathbf{j}+3\mathbf{k})=\mathbf{i}-3\mathbf{j}-10\mathbf{k}$	M1: Attempt two points on l_1	MIAI
$\mathbf{M}^{-1}(6\mathbf{i}+4\mathbf{k})=6\mathbf{i}-16\mathbf{j}-44\mathbf{k}$	A1: Two correct points on l_1	MIAI
$\begin{pmatrix} 6+5\lambda \end{pmatrix}$	M1: Uses their points to obtain	
$-16-13\lambda$	A1: Correct parametric form for l_1	M1A1
$(-44-34\lambda)$	or correct position and direction.	
$\frac{x-6}{5} = \frac{y+16}{13} = \frac{z+44}{24}$ oe	M1: Attempts cartesian form from their parametric l_1 correctly.	
3 -13 -34 $a_1 + b_1\lambda$	Dependent on both previous M's.	dM1A1
$a_2 + b_2 \lambda \rightarrow \frac{x - a_1}{z} = \frac{y - a_2}{z} = \frac{z - a_3}{z}$		ulvIIAI
$a_3 + b_3 \lambda$ b_1 b_2 b_3	A1: A complete correct equation	
 (c) Way 3	3	
$ \begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & 1 \\ -4 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ -10 \end{pmatrix} $	M1:Solves $\mathbf{M} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$ A1: $\mathbf{i} - 3\mathbf{i} - 10\mathbf{k}$. Correct vector or	M1A1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & 1 \\ 4 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ -13 \\ 24 \end{pmatrix}$	M1:Solves $\mathbf{M} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$	M1A1
(-4 1 -1)(z) (1) (z) (-34)	values for x, y and z	
$\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34}$	M1: Attempts Cartesian form from their values <u>correctly</u> . Dependent on both previous M's.	d M1A1
	A1: A complete correct equation	
 (c) Way 4	M1: Attempt b in parametric form	
$l_2:(1+5\lambda)\mathbf{i}+(-2+2\lambda)\mathbf{j}+(3+\lambda)\mathbf{k}$	correctly A1: Correct	M1A1
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 1+5z \end{pmatrix}$	λ $x = 1 + 5\lambda$	
$\begin{vmatrix} 2 & -2 & 1 \end{vmatrix} \begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} -2 + 2 \end{vmatrix}$	$2\lambda \Rightarrow y = -3 - 13\lambda$	
$\begin{pmatrix} -4 & 1 & -1 \end{pmatrix} \begin{pmatrix} z \end{pmatrix} \begin{pmatrix} 3+\lambda \end{pmatrix} = z = -10 - 34\lambda$		
M1: Uses $\mathbf{M}\mathbf{x} = l_2$ in parametric form		
 A1: Correct expressions	M1: Attempts Cartesian form from	
$\frac{x-1}{5} = \frac{y+3}{-13} = \frac{z+10}{-34}$	their values <u>correctly</u> . Dependent on both previous M's.	d M1A1
	A1: A complete correct equation	

Question Number	Scheme	Notes	Marks
7	$I_n = \int_0^{\ln 2} \cosh^n x \mathrm{d}x$	ç	
(a)	$I_n = \int \cosh^{n-1} x \cosh x \mathrm{d}x$		
	$I_n = \int \cosh^{n-1} x \cosh x dx = \sinh x \cosh^{n-1} x - dx$	$\int (n-1)\cosh^{n-2}x\sinh^2 x\mathrm{d}x$	
	M1: Integration by parts in the correct direction. If correct otherwise look for an expre	The formula is quoted it must be assion of the form	M1A1
	$\pm \sinh x \cosh^{n-1} x \pm k \int \cosh^{n-1} x dx$	$x^{2}x\sinh^{2}xdx$	
	A1: Correct expressi	on	
	$= \sinh x \cosh^{n-1} x - \int (n-1) \cosh^{n-2} x (\cosh^2 x - 1) dx$	Replaces $\sinh^2 x$ with $\pm \cosh^2 x \pm 1$ on thex"integration part" to obtain anexpression in $\cosh x$ only.Dependent on the firstmethod mark.	d M1
	$= \sinh x \cosh^{n-1} x - (n-1) \int \cosh^n x dx +$	$(n-1)\int \cosh^{n-2}x\mathrm{d}x$	
	$= \sinh x \cosh^{n-1} x - (n-1)I_n + (n-1)I_{n-2}$	Introduces <i>I_n</i> and <i>I_{n-2}</i> . Dependent on both previous method marks .	dd M1
	$\left[\sinh x \cosh^{n-1} x\right]_{0}^{\ln 2} = \sinh(\ln 2) \cosh^{n-1}(\ln 2) \left(-0\right)$	Use of given limits on their sinh $x \cosh^{n-1} x$. Does not need to be evaluated but note that	M1
	$\left(=\left(\frac{-1}{4}\right)\left(\frac{-1}{4}\right)$	$\cosh(\ln 2) = \frac{5}{4}, \sinh(\ln 2) = \frac{3}{4}$	
	$I_{n} = \frac{3 \times 5^{n-1}}{n \times 4^{n}} + \frac{(n-1)}{n} I_{n-2} *$	cao	A1*
			(6)

(a) Way 2		
$I_n = \int \cosh^{n-2}x \cosh^2 x dx = \int \cosh^{n-2}x dx + $	$\int \cosh^{n-2}x \sinh^2 x dx$	M1
 writes $\cosh x$ as $\cosh x \cosh x$ and uses $\sinh x = \pm \cosh x \pm 1$		
$\int \cosh^{n-2} x \sinh^2 x dx = \left[\frac{\sinh x \cosh^{n-1} x}{n-1}\right] -$	$-\frac{1}{n-1}\int \cosh^n x\mathrm{d}x$	
M1: Integration by parts in the correct direction. If the correct otherwise look for an expression	e formula is quoted it must be on of the form	dM1A1
$p \sinh x \cosh^{n-1} x \pm q \int \cosh^n x \mathrm{d}x$		
A1: Correct expression		
$(n-1)I_n = (n-1)I_{n-2} + [\sinh x \cosh^{n-1} x] - I_n$	Introduces <i>I_n</i> and <i>I_{n-2}</i> . Dependent on both previous method marks .	dd M1
$\left[\sinh x \cosh^{n-1} x\right]_{0}^{\ln 2} = \sinh(\ln 2) \cosh^{n-1}(\ln 2) \left(-0\right)$ $\left(=\left(\frac{3}{4}\right) \left(\frac{5}{4}\right)^{n-1}\right)$	Use of given limits on their sinh x cosh ⁿ⁻¹ x. Does not need to be evaluated but note that $\cosh(\ln 2) = \frac{5}{4}$, $\sinh(\ln 2) = \frac{3}{4}$	M1
$I_n = \frac{3 \times 5^{n-1}}{n \times 4^n} + \frac{(n-1)}{n} I_{n-2} *$	cao	A1*
You can condone the occasional missing <i>x</i> , d <i>x</i> and	d limits along the way and	
"invisible" brackets may be ree	covered.	
Do not allow e.g. an obvious sign error that gets "co final A1 in such cases.	rrected" later – withhold the	

(b)	$I_4 = \frac{3 \times 5^3}{4 \times 4^4} + \frac{3}{4}I_2$ or $\frac{3 \times a^3}{4 \times b^4} + \frac{3}{4}I_2$	Correct first application of their or the given reduction formula	M1
	$= \frac{3 \times 5^{3}}{4 \times 4^{4}} + \frac{3}{4} \left(\frac{3 \times 5}{2 \times 4^{2}} + \frac{1}{2} I_{0} \right) \text{ or } \frac{3 \times a^{3}}{4 \times b^{4}} + \frac{3}{4} \left(\frac{3 \times a}{2 \times b^{2}} + \frac{1}{2} I_{0} \right)$ Correct second application of their or the given reduction formula that is consistent with the formula used in the first application to obtain I_{4} in terms of I_{0}		M1
	$I_0 = \ln 2$		B1
	$I_4 = \frac{735}{1024} + \frac{3}{8}\ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	A1
	Note that candidates may work fi	rom the "other end" e.g.	
	$I_0 = \ln 2$	Bl	
	$I_2 = \frac{3 \times 5}{2 \times 4^2} + \frac{1}{2}I_0$ M1	I_2 interms of I_0	
	$I_4 = \frac{3 \times 5^3}{4 \times 4^4} + \frac{3}{4} \left(\frac{3 \times 5}{2 \times 4^2} + \frac{1}{2} I_0 \right)$	M1 I_4 in terms of I_0	
	$I_4 = \frac{735}{1024} + \frac{3}{8} \ln 2$ A1		
	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)		
			(4)
(b) Way 2	$I_4 = \frac{3 \times 5^3}{4 \times 4^4} + \frac{3}{4}I_2$	Correct application of their reduction formula	M1
	$I_2 = \int_0^{\ln 2} \cosh^2 x dx = \int_0^{\ln 2} \left(\frac{1}{2} + \frac{1}{2}\cosh 2x\right) dx$		
	$\int \left(\frac{1}{2} + \frac{1}{2}\cosh 2x\right) dx = \frac{x}{2} + \frac{1}{4}\sinh 2x$	Correct integration	B1
	$I_2 = \left[\frac{x}{2} + \frac{1}{4}\sinh 2x\right]_0^{\ln 2} = \frac{1}{2}\ln 2 + \frac{15}{32}$	Correct use of limits on an expression of the form $\alpha x + \beta \sinh 2x$	M1
	$I_4 = \frac{3 \times 5^3}{4 \times 4^4} + \frac{3}{4} \left(\frac{1}{2}\ln 2 + \frac{15}{32}\right)$		
	$I_4 = \frac{735}{1024} + \frac{3}{8}\ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	A1

(b) Way 3	$I_4 = \int_0^{\ln 2} \cosh^4 x dx = \int_0^{\ln 2} \left(\frac{1}{2} + \frac{1}{2} \cosh 2x\right)^2 dx$		
	$\int_{0}^{\ln 2} \left(\frac{1}{4} + \frac{1}{2} \cosh 2x + \frac{1}{4} \cosh^2 2x \right) dx$	$\cosh^4 x = \frac{1}{4} + \frac{1}{2}\cosh 2x + \frac{1}{4}\cosh^2 2x$	B1
	$\frac{1}{4} \int_0^{\ln 2} \left(1 + 2\cosh 2x + \frac{1}{2} \left(1 + \cosh 4x \right) \right) dx$	$\cosh^2 2x = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 4x$ and attempt to integrate	M1
	$\frac{1}{4} \left[\frac{3x}{2} + \sinh 2x + \frac{1}{8} \sinh 4x \right]_{0}^{\ln 2}$	Correct use of correct limits	M1
	$I_4 = \frac{735}{1024} + \frac{3}{8}\ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	A1

(b) Way 4	$I_4 = \int_0^{\ln 2} \cosh^4 x dx = \int_0^{\ln 2} \left(\frac{e^x + e^{-x}}{2}\right)^4 dx$		
	$= \int_0^{\ln 2} \left(\frac{e^x + e^{-x}}{2} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(e^{4x} \right)^4 dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{\ln 2} \left(\frac{1}{16} \right) dx = \left(\frac{1}{16} \right) \int_0^{$	$x^{x} + 4e^{2x} + 6 + 4e^{-2x} + e^{-4x} dx$	B1
	Correct expar	nsion	
	$= \left(\frac{1}{16}\right) \left[\frac{e^{4x}}{4} + 2e^{2x} + 6x - 2e^{-2x} - \frac{e^{-4x}}{4}\right]_{0}^{\ln 2}$	Attempts to integrate their expansion	M1
	$\left(\frac{1}{16}\right) \left[\left(4+8+6\ln 2-\frac{1}{2}-\frac{1}{64}\right) - \left(0\right) \right]_{0}^{\ln 2}$	Correct use of correct limits	M1
	$I_4 = \frac{735}{1024} + \frac{3}{8}\ln 2$	Cao (Allow equivalent exact forms e.g. may be factorised but fractions must be collected)	A1
			Total 10

Question Number	Scheme	Notes	Marks
8(a) Way 1	$y = \ln\left(\frac{e^{x}+1}{e^{x}-1}\right) = \ln\left(e^{x}+1\right) - \ln\left(e^{x}-1\right) \Longrightarrow \frac{dy}{dx} = \frac{e^{x}}{e^{x}+1} - \frac{e^{x}}{e^{x}-1}$ M1: Uses correct log rule and attempts derivative using chain rule		M1A1
	A1: Correct Derivat	ive	
	$=\frac{e^{2x}-e^{x}-e^{2x}-e^{x}}{e^{2x}-1}=\frac{-2e^{x}}{e^{2x}-1}*$	dM1: Attempt single fraction and uses $(e^x - 1)(e^x + 1) = e^{2x} - 1$. Dependent on the first method mark. A1: Completes correctly with no errors	dM1A1*
			(4)
	(a) Way 2		
	$\frac{dy}{dx} = \frac{e^{x} - 1}{e^{x} + 1} \left(\frac{e^{x} (e^{x} - 1) - e^{x} (e^{x} + 1)}{(e^{x} - 1)^{2}} \right)$	M1: Uses chain and quotient or product rules	
	Or		MIAI
	$\frac{dy}{dx} = \frac{e^{x} - 1}{e^{x} + 1} \left(e^{x} \left(e^{x} - 1 \right)^{-1} - e^{x} \left(e^{x} + 1 \right) \left(e^{x} - 1 \right)^{-2} \right)$	A1: Correct derivative	
	$=\frac{1}{e^{x}+1}\left(-\frac{2e^{x}}{e^{x}-1}\right)=-\frac{2e^{x}}{e^{2x}-1}*$	dM1: Cancels $e^x - 1$ and uses $(e^x - 1)(e^x + 1) = e^{2x} - 1$. Dependent on the first method mark. A1: Completes correctly with	d M1A1*
		no errors	
	(a) Way 3		
	$y = \ln\left(\frac{e^{x} + 1}{e^{x} - 1}\right) \Longrightarrow e^{y} = \frac{e^{x} + 1}{e^{x} - 1} \Longrightarrow e^{y} \frac{dy}{dx} =$ M1: Removes logs correctly and differentiates im rules A1: Correct differenti	$= \frac{e^{x}(e^{x}-1)-e^{x}(e^{x}+1)}{(e^{x}-1)^{2}}$ inplicitly using chain and quotient ation	M1A1
	$\frac{dy}{dx} = -\frac{2e^x}{\left(e^x - 1\right)^2} \times \frac{e^x - 1}{e^x + 1} = -\frac{2e^x}{e^{2x} - 1} *$	 dM1: Divides by e^y in terms of <i>x</i>. Dependent on the first method mark. A1: Completes correctly with no errors 	dM1A1

(a) Way 4		
$y = \ln\left(\frac{e^x + 1}{e^x - 1}\right) = \ln\left(\coth\frac{1}{2}x\right) \Longrightarrow \frac{dy}{dx} = \frac{1}{\coth\frac{1}{2}x} \times -\frac{1}{2}\operatorname{cosech}^2\frac{1}{2}x$		
M1: Writes as $\ln\left(\coth\frac{1}{2}x\right)$ and differentiates using the chain rule	M1A1	
A1: Correct differentiation		
$= \left(\frac{e^{x}-1}{e^{x}+1}\right) \times \frac{-2e^{x}}{\left(e^{x}-1\right)^{2}} = -\frac{2e^{x}}{e^{2x}-1}$ dM1: Substitutes the correct exponential forms. Dependent on the first method mark. A1: Completes correctly with	d M1A1	
 no errors		

	(a) Way 5		
	$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \Longrightarrow y = 2 \operatorname{artanh} \left(e^{-x} \right)$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{1 - \left(\mathrm{e}^{-x}\right)^2} \times -\mathrm{e}^{-x}$		M1A1
	M1: Writes y correctly in terms of artanh and attempts to differentiate using the chain rule		
	A1: Correct differentiation		
		dM1: Multiplies numerator and	
	$\frac{dy}{dx} = \frac{-2e^{-x}}{1 - e^{-2x}} = \frac{-2e^{x}}{e^{2x} - 1} *$	denominator by e^{2x} . Dependent on	
		the first method mark.	dM1A1
		A1: Completes correctly with no	
		errors	

(a) Way 6		
$y = \ln\left(1 + \frac{2}{e^{x} - 1}\right) \Longrightarrow \frac{dy}{dx} = \frac{1}{1 + 2(e^{x} - 1)^{-1}} \times -2e^{x}(e^{x} - 1)^{-2}$		
M1: Writes $\frac{e^x + 1}{e^x - 1}$ as $1 + \frac{2}{e^x - 1}$ and differentiates using the chain rule		
A1: Correct differentiation		
dM1: Multiplies denominator by		
$= \frac{-2e^{x}}{1-2e^{x}} = \frac{-2e^{x}}{1-2e^{x}}$ (e ^x - 1) ² . Dependent on the first		
$(e^{x}-1)^{2}+2(e^{x}-1)$ $e^{2x}-1$ method mark.	uMIAI	
A1: Completes correctly with no		
errors		

(b)	$L = \int \sqrt{\left(1 + \left(\pm \frac{2e^x}{e^{2x} - 1}\right)^2\right)} dx$	Uses the correct arc length formula with ± the result from part (a). Note that we condone the omission of the minus sign on the fraction)	M1
	$= \int \sqrt{\left(\frac{e^{4x} - 2e^{2x} + 1 + 4e^{2x}}{\left(e^{2x} - 1\right)^2}\right)} dx$	Attempt single fraction. Dependent on the first method mark.	d M1
	Note that, for the first 2 marks, the candida	te may just work on the integrand	
	$\sqrt{\left(1 + \left(\pm \frac{2e^x}{e^{2x} - 1}\right)^2\right)} = \sqrt{\left(\frac{e^{4x}}{e^{4x}}\right)^2}$	$\frac{-2e^{2x}+1+4e^{2x}}{(e^{2x}-1)^2}$	
	Would score the firs	st 2 marks.	
	$L = \int \sqrt{\frac{\left(e^{2x}+1\right)^2}{\left(e^{2x}-1\right)^2}} \mathrm{d}x = \int \frac{\left(e^{2x}+1\right)}{\left(e^{2x}-1\right)} \mathrm{d}x$	Correct integral with square root removed. No limits required.	A1
	$= \int \coth x dx, \ \int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx, \ \int 1 + \frac{2e^{-2x}}{1 - e^{-2x}}$	$dx, \frac{1}{2}\int \frac{2}{u} - \frac{1}{u+1}du(u = e^{2x} - 1)$	
	$\frac{1}{2} \int \frac{2}{u-1} - \frac{1}{u} du \left(u = e^{2x} \right), \int \frac{1}{u+1}$	$+\frac{1}{u-1}-\frac{1}{u}\mathrm{d}u(u=\mathrm{e}^{x}),$	
	$\frac{1}{2}\int \frac{2}{u-2} -\frac{1}{u-1} du \left(u = e^{2x} + 1\right)$		
	$= \left[\ln \sinh x\right], \left[\ln \left(e^{x} - e^{-x}\right)\right], \left[x + \ln \left(1 - e^{-2x}\right)\right], \left[\ln u - \ln \sqrt{(1+u)}\right],$		
	$\left[\ln(u-1) - \ln\sqrt{u}\right], \left[\ln\frac{(u^2-1)}{u}\right], \left[\ln(u-2) - \ln\sqrt{u-1}\right]$ Correct integration		A1
	$= \ln \sinh(\ln 3) - \ln \sinh(\ln 2)$	Correct use of limits e.g. ln3 and ln2 for x and e.g. 3 and 8 if $u = e^{2x} - 1$. They must be the	
	$\left(=\ln\frac{4}{3}-\ln\frac{3}{4}\right)$	correct limits for their method if they use substitution. Dependent on both previous method marks.	uuivi i
	$=\ln\frac{16}{9}$	cao	A1
			(6) Total 10

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom